Bioinformatics Strategies for Multidimensional Brain Imaging Genetics

Li Shen

Department of Radiology and Imaging Sciences Center for Neuroimaging

Center for Computational Biology and Bioinformatics Indiana University School of Medicine

MICGen: MICCAI Workshop on Imaging Genetics, 9/14/2014

Outline

- <u>Neuroimaging Genomics</u>
- ADNI Genetics Review
- Example Study
- Major Findings and Discussion

NEUROIMAGING

	Normal	EMCI	MCI	LMCI	AD	MRI	fMRI	DTI	FDG	AV45	PIB	Biosamples
ADNI I	200	-	400	-	200	\bigcirc			\bigcirc		\bigcirc	\bigcirc
ADNI GO	\downarrow	200	\downarrow	-	-	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
ADNI 2	150	150	\checkmark	150	200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc

Overview of ADNI Genetics

Alzheimer's

يئ Dementia

Alzheimer's & Dementia 6 (2010) 265-273

Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans

Andrew J. Saykin^{a,b,*}, Li Shen^{a,c}, Tatiana M. Foroud^b, Steven G. Potkin^d, Shanker Swaminathan^{a,b}, Sungeun Kim^{a,c}, Shannon L. Risacher^a, Kwangsik Nho^{a,e}, Matthew J. Huentelman^f, David W. Craig^f, Paul M. Thompson^g, Jason L. Stein^g, Jason H. Moore^{h,i}, Lindsay A. Farrer^j, Robert C. Green^j, Lars Bertram^k, Clifford R. Jack, Jr.¹, Michael W. Weiner^{m,n,o,p}; and the Alzheimer's Disease Neuroimaging Initiative

Saykin et al (2010) Alzheimer's & Dementia

Human Genome and SNP

- SNP (Single Nucleotide Polymorphism) - single nucleotide site where two or more different nucleotides occur in a large percentage of population.
- Total number of SNP (09/13/2014): <u>Entrez SNP</u>

Limits Activated: homo sapiens, snp Change | Remove

Results: 1 to 20 of 61935139

rs34039386 [Homo sapiens]

1.

TCTGACCACCTGCAGGAAGGAAGGC [A/G] GTGACCTYRCA#

Imaging Genetics

Outline

- Neuroimaging Genomics
- ADNI Genetics Review
- Example Study
- Major Findings and Discussion

Publications using ADNI Genetics Data

ADNI Genetics Papers:

3 (2009) + 23 (2010) + 28 (2011) + 52 (2012) + 65 (2013) = 171

Distribution of publications using the ADNI APOE and GWAS/WES genotyping data between 2009 and 2013: Of the 171 papers, 65 papers used only APOE data, and 106 papers used GWAS data.

Shen et al, Brain Imaging Behav 2014, Yao et al, AAIC 2014

Classification by Genotype (2013 Papers)

Genotype	#	Example Paper							
APOE alone	35	Risacher, Kim, et al. 2013, Front Aging Neurosci	The role of apolipoprotein E (APOE) genotype in early mild cognitive impairment (E-MCI)						
CNVs	1	Guffanti, Torri, et al. 2013, Genomics	Increased CNV-Region deletions in mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects in the ADNI sample						
SNPs	13	Kim, Swaminathan, et al. 2013, PLoS One	Influence of genetic variation on plasma protein levels in older adults using a multi-analyte Panel						
Gene/Pathways	10	Kohannim, Hua, et al. 2013, Neuroimage Clin	Multilocus genetic profiling to empower drug trials and predict brain atrophy						
GWAS	9	Sherva, Tripodis, et al. 2013, Alzheimers Dement	Genome-wide association study of the rate of cognitive decline in Alzheimer's disease						
Sequencing	2	Nho, Kim, et al. 2013, Mol Psychiatry	Whole-exome sequencing and imaging genetics identify functional variants for rate of change in hippocampal volume in mild cognitive impairment						

Classification by Phenotype (2013 Papers)

Phenotype	#	Example Paper							
Case Control	4	Boada, Antunez, et al. 2013, Mol Psychiatry	ATP5H/KCTD2 locus is associated with Alzheimer's disease risk						
Structural Imaging (sMRI, dMRI)	27	Hibar, Stein, et al. 2013, Brain Imaging Behav	Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N=1345 young and elderly subjects						
Functional Imaging (fMRI, 1 PET)		Swaminathan, Risacher, et al. 2013, Alzheimers Dement	Association of plasma and cortical amyloid beta modulated by APOE ε4 status						
Fluid (CSF, Blood)	14	Cruchaga, Kauwe, et al. 2013, Neuron	GWAS of Cerebrospinal Fluid Tau Levels Identifies Risk Variants for Alzheimer's Disease						
Neuropsychol ogical Assessments	19	Chang, Fennema- Notestine, et al. 2013, Alzheimers Dement	APOE interacts with age to modify rate of decline in cognitive and brain changes in Alzheimer's disease						

Classification by Method (2013 Papers)

Method	#	Example Paper							
Univariate Analysis	19	Benitez, Karch, et al. 2013, PLoS Genet	The PSEN1, p.E318G Variant Increases the Risk of Alzheimer's Disease in APOE-e4 Carriers						
Multivariate Analysis	19	Bryant, Giovanello, et al. 2013, PLoS One	Mapping the Genetic Variation of Regional Brain Volumes as Explained by All Common SNPs from the ADNI Study						
Meta Analysis	6	Lambert, Ibrahim-Verbaas, et al. 2013, Nat Genet	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease						
Pathway Analysis	4	Mukherjee, Kim, et al. 2013, Brain Imaging Behav	Gene-based GWAS and biological pathway analysis of the resilience of executive functioning						
Interaction and Network Analysis	2	Meda, Koran, et al. 2013, Neurobiol Aging	Genetic interactions associated with 12-month atrophy in hippocampus and entorhinal cortex in Alzheimer's Disease Neuroimaging Initiative						
Prediction and Progression	22	Gray, Aljabar, et al. 2013, Neuroimage	Random forest-based similarity measures for multi-modal classification of Alzheimer's disease						

Reviews (2013 Papers)

Review	#		Example Paper								
ADNI Findings	2	Weiner, Veitch, et al. 2013, Alzheimers Dement	The Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception								
ADNI Genetics Findings	2	Shen, Thompson, et al. 2013, Brain Imaging Behav	Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers								

Brain-Genome Association Strategies

Candidate Gene/SNP

Biological Pathway/Network

Genome-wide Analysis

ROI

Circuit

APC of Hippocampal Volume

Risacher et al 2010

Sloan et al 2010

Potkin et al 2009; Saykin et al 2010

Risacher et al 2013 AV45 ROIs & APOE

Ho et al 2010 FTO; Reiman et al PNAS 2009

Swaminathan et al 2012 PiB ROIs & amyloid pathway

Chiang et al 2012 SNP/Gene networks & WM integrity

Potkin et al 2009 Mol Psych schizophrenia study

Shen et al 2010 ROIs; Stein et al 2010 voxels

Outline

- Neuroimaging Genomics
- ADNI Genetics Review
- Example Study
- Major Findings and Discussion

Transcriptome-Guided Amyloid Imaging Genetic Analysis via A Novel Structured Sparse Learning Algorithm

Jingwen Yan, Lei Du, Sungeun Kim, Shannon L. Risacher, Heng Huang, Jason H. Moore, Andrew J. Saykin, Li Shen, and for the Alzheimer's Disease Neuroimaging Initiative

Yan et al, Bioinformatics (ECCB 2014 Issue)

Introduction

- Bi-multivariate associations
 - Genotype: APOE SNPs
 - Phenotype: Amyloid imaging
- Prior knowledge
 - LD structures in the genome
 - Network structure in the brain
 - Whole brain transcriptomics
- Knowledge-guided SCCA

Overview

Imaging Genetics Strategies

Pairwise Analysis

Multiple Regression

Canonical Correlation Analysis

Sparse CCA

- Sparse canonical correlation analysis (SCCA)
 - R package: Penalized Multivariate Analysis (PMA) (*Witten, et al, 2009*)

 $\max_{u,v} u^T X^T Y v$

subject to $\boldsymbol{u}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{u} = 1, \, \boldsymbol{v}^T \boldsymbol{Y}^T \boldsymbol{Y} \boldsymbol{v} = 1$ $P_1(\boldsymbol{u}) \leq c_1, P_2(\boldsymbol{v}) \leq c_2$

- -X, Y : imaging and genetics data respectively
- $P_1(\boldsymbol{u}), P_2(\boldsymbol{v})$: sparse penalties, mostly L_1 norm
- For simplicity, assuming $X^T X = I$ and $Y^T Y = I$
- Bi-convex and non differentiable problem
- Iterative solution

Sparse CCA

- Sparse canonical correlation analysis (SCCA)
 - Problem

 $\max_{u,v} u^T X^T Y v$

subject to $u^T u = 1, v^T v = 1, ||u||_1 \le c_1, ||v||_1 \le c_2$

Iterative solution

1. $\boldsymbol{u} \leftarrow \arg \max_{\boldsymbol{u}} \boldsymbol{u}^T \boldsymbol{X}^T \boldsymbol{Y} \boldsymbol{v}$, subject to $\boldsymbol{u}^T \boldsymbol{u} = 1$, $\|\boldsymbol{u}\|_1 \leq c_1$

2. $\boldsymbol{v} \leftarrow \arg \max_{\boldsymbol{u}} \boldsymbol{u}^T \boldsymbol{X}^T \boldsymbol{Y} \boldsymbol{v}$, subject to $\boldsymbol{v}^T \boldsymbol{v} = 1$, $\|\boldsymbol{v}\|_1 \leq c_2$ Assumption: Independence among data features

 $- \boldsymbol{u} \leftarrow \frac{S(X^T Y \boldsymbol{v}, \Delta)}{\|S(X^T Y \boldsymbol{v}, \Delta)\|_2}, S(X^T Y \boldsymbol{v}, \Delta) \text{ is the soft thresholding} operator and \Delta \ge 0 \text{ is chosen so that } \|\boldsymbol{u}\|_1 \le c_1$

KG-SCCA

• Knowledge-guided Sparse canonical correlation analysis (KG-SCCA)

 $\max_{u,v} u^T X^T Y v$

subject to
$$\boldsymbol{u}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{u} = 1, \, \boldsymbol{v}^T \boldsymbol{Y}^T \boldsymbol{Y} \boldsymbol{v} = 1$$

 $P_1(\boldsymbol{u}) \leq c_1, P_2(\boldsymbol{v}) \leq c_2$

X: Genotype

Y: Phenotype

Network Structure

<i>V</i> :	1	2	3	4	5						
1	1	-0.4	0.2	0.8	0.1		0	0.9	0	-0.9	
2	-0.4	1	0.2	0.9	-0.3		0.4	0.4	0	0	
3	0.2	0.2	1	0.3	0.5	\longrightarrow			•••		
4	0.8	0.9	0.3	1	0.7		0	0.3	0	0	0
5	0.1	-0.3	0.5	0.7	1		0	0.2	-0.2	0	

Connection Matrix

Neighboring Matrix: C

$$P_2 = ||\mathbf{v}||_N = |\beta_2||\mathbf{C}\mathbf{v}||_2^2 + \theta_2||\mathbf{v}||_1.$$

Iterative Algorithm

• Let $\mathbf{B}_1 = \frac{1}{\gamma_1} \mathbf{Y} \mathbf{v}$ and $\mathbf{B}_2 = \frac{1}{\gamma_2} \mathbf{X} \mathbf{u}$

$$\underset{\mathbf{v}}{\min} \frac{1}{2} ||\mathbf{X}\mathbf{u} - \mathbf{B}_{1}||_{2}^{2} + \frac{\beta_{1}}{\gamma_{1}} \sum_{k_{1}=1}^{K_{1}} ||\mathbf{u}^{k_{1}}||_{2} + \frac{\theta_{1}}{\gamma_{1}} ||\mathbf{u}||_{1}$$
$$\underset{\mathbf{v}}{\min} \frac{1}{2} ||\mathbf{Y}\mathbf{v} - \mathbf{B}_{2}||_{2}^{2} + \frac{\beta_{2}}{2\gamma_{2}} ||\mathbf{C}\mathbf{v}||_{2}^{2} + \frac{\theta_{2}}{\gamma_{2}} ||\mathbf{v}||_{1}$$

- *u*: G-SMuRFS
 - (Wang et al., Bioinformatics, 28(2):229-237, 2012)
- \boldsymbol{v} : Network-guided $L_{2,1}$

- (Yan et al., pp. 1202-1205, ISBI 2014)

Simulated Data

- Simulated Data
 - Subj.: n=200
 - GT: p=200
 - PT: q=150
- 7 data sets
- Correlations
 0.6 ~ 1.0
- The canonical loadings and group structure remained the same across all the datasets.

Results: Synthetic Data

True	Correlati	on Coefficien	ts (CC)	Area under ROC (AUC)						
CC	KG-SCCA PMA p		KG-SCCA:u	PMA:u p		KG-SCCA:v	PMA:v			
0.60	0.56 ± 0.12	0.31 ± 0.14	2.19E-03	$0.83 {\pm} 0.08$	$0.64{\pm}0.02$	3.36E-03	1.0 ± 0.00	$1.0 {\pm} 0.00$		
0.64	0.56 ± 0.1	0.51 ± 0.12	2.32E-02	0.96 ± 0.04	$0.65 {\pm} 0.01$	2.20E-05	1.0 ± 0.00	$1.0 {\pm} 0.00$		
0.70	0.64 ± 0.1	0.53 ± 0.1	1.27E-05	0.99 ± 0.01	$0.62 \pm 0.$	6.21E-08	$1.0 {\pm} 0.00$	$1.0 {\pm} 0.00$		
0.77	0.7 ± 0.14	0.6 ± 0.14	6.62E-03	0.99 ± 0.01	$0.62 \pm 0.$	9.67E-09	$1.0 {\pm} 0.00$	$1.0 {\pm} 0.00$		
0.85	$0.76 {\pm} 0.08$	0.65 ± 0.1	1.02E-04	$0.98 {\pm} 0.03$	$0.63 {\pm} 0.01$	4.57E-06	$1.0 {\pm} 0.00$	$1.0 {\pm} 0.00$		
0.95	$0.87 {\pm} 0.04$	$0.67 {\pm} 0.09$	1.19E-03	1.00 ± 0.00	$0.63 {\pm} 0.01$	1.39E-08	1.0 ± 0.00	$1.0 {\pm} 0.00$		
1.00	$0.92{\pm}0.04$	$0.71{\pm}0.06$	2.46E-04	$1.00 {\pm} 0.00$	$0.64{\pm}0.01$	4.02E-08	$1.0 {\pm} 0.00$	$1.0{\pm}0.00$		

ADNI Imaging Data

- Alzheimer's disease Neuroimaging Initiative (ADNI)
- AV45 amyloid imaging data
- 39 pairs of bilateral cortical ROIs (78 in total)
- **Covariates**: baseline age, gender, education, and handedness.

	AD	MCI	HC
Number	28	343	196
Gender(M/F)	18/10	203/140	102/94
Handedness(R/L)	23/5	309/34	178/18
Age(mean±std)	75.23 ± 10.66	71.92 ± 7.47	74.77 ± 5.39
Education(mean±std)	15.61 ± 2.74	$15.99 {\pm} 2.75$	$16.46 {\pm} 2.65$

ADNI Genetics Data

- Alzheimer's disease Neuroimaging Initiative (ADNI)
- All the APOE SNPs extracted based on the quality controlled and imputed data combining two phases together
 - Including only SNPs available in both Illumina 610Quad and/or OmniExpress
- 58 SNPs located within 10 LD blocks computed using HaploView
- *Covariates*: baseline age, gender, education, and handedness.

- Amyloid pathway-based gene co-expression network
- Allen Human Brain Atlas (AHBA)
- 15 candidate genes from amyloid pathways studied in (*Swaminathan et al., 2012*)

	LOC_1	LOC_2	LOC_3	LOC_4	LOC_5
Gene_1	10.7	12.5	10.2	9.4	6.54
Gene_2	9.36	8.23	10.2	9.4	12.5
Gene_3	23.67	12.5	9.36	12.5	3.22
Gene_4	10.7	9.36	12.5	9.4	15.96
Gene_5	10.34	9.4	19.22	12.5	12.5
Gene_6	19.7	12.5	10.2	9.4	8.2

- Allen Human Brain Atlas (AHBA)
- Two Full brain sample
- AHBA space -> MarsBAR AAL space

- Allen Human Brain Atlas (AHBA)
- Two Full brain sample

- Network visualization by correlation
 - − ≥0.5 or ≤-0.5
- Symmetric
 - left / right brain
- From top to bottom: frontal lobe, cingulate, parietal lobe, temporal lobe, occiptal lobe, insula, and sensorymotor cortex.

Results: Real Data

				1	Train						Test		
		f1	f2	f3	f4	f5	mean	f1	f2	f3	f4	f5	mean
4	exp1	0.471	0.448	0.475	0.451	0.46	0.461	0.431	0.515	0.401	0.417	0.459	0.445
2	exp2	0.476	0.453	0.454	0.476	0.461	0.464	0.402	0.505	0.503	0.401	0.458	0.454
Š	exp3	0.476	0.474	0.474	0.468	0.402	0.459	0.408	0.393	0.413	0.435	0.565	0.443
9	exp4	0.468	0.466	0.459	0.46	0.466	0.464	0.441	0.409	0.47	0.476	0.445	0.448
-	exp5	0.49	0.502	0.434	0.449	0.447	0.464	0.35	0.297	0.584	0.527	0.528	0.457
	exp1	0.439	0.418	0.438	0.438	0.426	0.432	0.368	0.45	0.398	0.379	0.439	0.407
A	exp2	0.444	0.416	0.425	0.436	0.432	0.431	0.354	0.463	0.449	0.399	0.416	0.416
M	exp3	0.442	0.445	0.439	0.427	0.398	0.43	0.382	0.341	0.382	0.432	0.544	0.416
Ц	exp4	0.434	0.44	0.425	0.427	0.431	0.432	0.414	0.363	0.445	0.438	0.415	0.415
	exp5	0.459	0.462	0.406	0.416	0.411	0.431	0.288	0.287	0.517	0.486	0.501	0.416
						pvalue	3.08E-6					pvalue	8.07E-5

Results: Real Data

Conclusion

- Brain imaging genetics study between brain-wide amyloid accumulation and genetic variations in the APOE gene
- Proposed a novel knowledge-guided sparse canonical correlation analysis (KG-SCCA) algorithm
 - not only removes the independence assumption, but also models both the group-like and network-like prior knowledge
 - Better performance in both synthetic data and real data
- Limitation: Scalability remains a problem when considering genome-wide study.

Outline

- Neuroimaging Genomics
- ADNI Genetics Review
- Example Study
- Major Findings and Discussion

Major Findings (As of 12/31/2012)

- Top 10 AD genes
 - APOE, BIN1, CLU, ABCA7, CR1, PICALM, MS4A6A, CD33, MS4A4E, CD2AP
- Top 10 AD genes associated with QTs
 APOE, BIN1, CLU, CR1, PICALM
- Replicated by \geq 2 groups
 - APOC1, APOE, BIN1, CD2AP, CLU, CR1, EPHA1, FTO, GRIN2B, MAGI2, MS4A4A, PICALM, TOMM40
- Power of quantitative traits
 - FRMD6

FRMD6: FERM domain-containing protein 6 Detected in 3 imaging genetics studies (2 ADNI; 1 ADNI/ANM) and validated by case/control GWAS

Chilibot Network Analysis

Chilibot analysis on 51 genes discovered from ADNI structural MRI genetic studies. Chilibot (http://www.chilibot.net/) searches PubMed abstracts and constructs contentrich relationship networks among biological concepts, genes, proteins, or drugs.

Metacore Pathway Enrichment Analysis

	(a) Enrichment by Pathway Maps: Results with FDR p≤0.05 are shown.										
#	Pathway Maps	pValue	FDR p	Hit Genes	Total Genes						
1	Cell adhesion Ephrin signaling	8.0E-05	0.018	4	45						
2	Neurophysiological process nNOS signaling in neuronal synapses	4.3E-04	0.048	3	29						
3	Neurophysiological process NMDA-dependent postsynaptic long-term potentiation in CA1 hippocampal neurons	7.5E-04	0.050	4	80						
4	Immune response Alternative complement pathway	1.0E-03	0.050	3	39						
5	Development_Neurotrophin family signaling	1.1E-03	0.050	3	40						
	(b) Enrichment by Process Networks: Results	s with FDR p≤0	.05 are she	own.							
#	Process Networks	pValue	FDR p	Hit Genes	Total Genes						
1	Development Neurogenesis Axonal guidance	2.3E-04	0.020	8	230						
2	Cell adhesion Synaptic contact	3.4E-04	0.020	7	184						
3	Development_Regulation of angiogenesis	1.1E-03	0.041	7	223						
4	Cell adhesion Attractive and repulsive receptors	1.6E-03	0.042	6	175						
5	Development Neurogenesis Synaptogenesis	1.8E-03	0.042	6	180						
	(c) Enrichment by Diseases: Top 5	results are sho	wn.								
#	Diseases	pValue	FDR p	Hit Genes	Total Genes						
1	<u>Alzheimer Disease</u>	2.7E-25	2.2E-22	45	1244						
2	<u>Tauopathies</u>	4.1E-25	2.2E-22	45	1256						
3	Mental Disorders	9.3E-25	3.1E-22	68	3388						
4	<u>Alzheimer disease, late onset</u>	1.3E-24	3.1E-22	30	432						
5	Psychiatry and Psychology	1.4E-24	3.1E-22	68	3412						

NGS and Convergent "Omics"

Acknowledgements

This work was supported in part by NLM R01 LM011360, NSF IIS-1117335, NIH UL1 RR025761, U01 AG024904, NIA RC2 AG036535, NIA R01 AG19771, and NIA P30 AG10133.